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ABSTRACT 

Designing the pavement foundation for rigid airfield pavements and 

understanding the contribution of pavement foundation elements to overall pavement 

performance and pavement failure have been challenges for the rigid airfield pavement 

design community. While many models have been developed to best simulate pavement 

foundation behavior for rigid airfield pavements, many of them have focused only on the 

failure of the Portland Cement Concrete (PCC) layer and did not sufficiently consider the 

contribution of pavement foundation to the failure. The Federal Aviation 

Administration’s (FAA’s) pavement design software, FAARFIELD, considers the 

maximum horizontal stress at the bottom edge of the concrete slab for the bottom-up 

cracking failure of a PCC layer but does not consider the critical responses for the failure 

of subbase and subgrade layers in rigid pavement design.  Incorporating critical pavement 

foundation responses into pavement design procedures is of great interest. The primary 

objective of this research study is to investigate the feasibility of developing rapid three-

dimensional finite-element (3D-FE)-based pavement foundation response and moduli 

prediction models for the design of both new and rehabilitated rigid airfield pavement 

structures. The three case studies investigated in the development of the models include: 

(1) rigid pavement foundation response prediction models for different wide-body aircraft 

loading conditions, (2) rigid pavement foundation response prediction models for 

Heavy/Falling Weight Deflectometer (H/FWD) loading conditions, and (3) single rigid-

pavement moduli prediction model. The development procedure and results based on 

rapid 3D-FE based prediction models are presented in this thesis along with other 

significant findings and recommendations for employing the developed models in the 
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structural design and evaluation of rigid airfield pavement systems. It was found that the 

developed models could successfully predict 3D-FE pavement solutions for all cases 

investigated in this study, could account for rigid pavement foundation-related distresses, 

and could be potentially integrated into FAARFIELD as surrogate forward response 

prediction models in the future. 



www.manaraa.com

1 

 

CHAPTER 1.    INTRODUCTION 

In rigid airfield pavement design, the pavement foundation typically consists of a 

base course, a subbase course and a subgrade (FAA 2016). Base courses can be divided into 

unstabilized and stabilized categories. Unstabilized base courses are typically composed of 

crushed and uncrushed aggregates, while stabilized base courses are composed of crushed 

and uncrushed aggregates stabilized with cement or asphalt. In addition, subbase courses 

typically use granular material that could be either unstabilized or stabilized. Finally, a 

typical subgrade is composed of either natural or modified soils.  

A base layer is used in rigid airfield pavement to provide a uniform and stable support 

for rigid pavement slabs. Selection of base layer types along with minimum base thickness 

requirements vary based on maximum airplane gross weight while operating on pavement 

(FAA 2016). For example, a stabilized base is required when pavements are designed to 

serve airplanes weighing more than 45.4 metric tons (100,000 lb.), while below that weight 

pavements do not require use of a stabilized base.  A minimum of 127 mm. (5 in.) of 

stabilized base and a minimum of 152.4 mm. (6 in.) crushed aggregate base thicknesses are 

also required when pavements are designed for serving airplanes over 45.4 metric tons 

(100,000 lb.). 

FAARFIELD, FAA’s pavement design software included in FAA AC 150/5320-6F 

(FAA 2016) allows users to consider up to three base/subbase layers in rigid pavement 

design procedures. Base/subbase layer material properties are characterized by modulus and 

Poisson’s ratio values. The modulus and Poisson ratio values for standard materials (e.g., P-

401 and P-403 defined in FAA AC 150/5370-10G (FAA 2014)) are directly assigned by the 

software and cannot be modified by the user. However, the software does allow users to 
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change the modulus input of a layer while displaying a warning that a ‘non-standard’ 

material has been used. The use of non-standard material requires FAA approval before its 

use.  

A subgrade layer is characterized by its modulus of subgrade reaction, its k or elastic 

(Young’s) modulus ESG, and its Poisson’s ratio, ν. While either k or ESG can be input to the 

software, FAARFIELD will use only ESG in structural computations. If the foundation 

modulus is entered into the software as a k value, it will be converted into ESG using the 

following equation (Equation 1) (FAA 2016): 

ESG = 20.15 × k1.284                                                                                                                                     (1) 

Where ESG = Elastic modulus (E-modulus) of the subgrade in psi and k = Modulus of 

subgrade reaction of the subgrade in psi/in. 

FAARFIELD employs a three-dimensional finite-element (3D-FE)-based engine 

(NIKE3D_FAA, abbreviated as NIKE3D) to compute concrete pavement responses. The 

FAA has also developed FEAFAA (Finite Element Analysis – FAA) that uses NIKE3D as a 

stand-alone tool for 3D-FE analysis of multiple-slab rigid airport pavements and overlays. It 

computes responses (deflections, stresses, and strains) of rigid pavements under the 

individual aircraft landing-gear loads. However, FAARFIELD considers only the maximum 

horizontal stress at the bottom edge of the concrete slab in determining bottom-up cracking 

failure of PCC layer but does not take into account the critical responses for failure of 

subbase and subgrade layers in rigid pavement designs. It is obvious that incorporating such 

pavement foundation responses into pavement design procedures would be of great interest.  

The Falling Weight Deflectometer (FWD) has been used to assess the structural 

integrity of existing pavements, to determine the material properties of in-situ pavement and 
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subgrade layers for design of rehabilitated pavement structures, and to compare relative 

strengths and/or conditions with respect to other sections of a pavement system (FAA 2016). 

For evaluating airfield pavement systems, a Heavy Weight Deflectometer (HWD) device, 

similar to a FWD testing, but having higher load levels, is used. These tests are performed by 

applying impulse loads to a pavement surface through circular metal plates and measuring 

pavement surface deflections resulting from the impulse load at several radial offsets. The 

extent and variation of the measured deflections are indicators of pavement system response 

to the applied load.  The distribution of deflections by offsets (deflection basin) is 

predominantly a function of the thickness of the pavement layers, the moduli of individual 

layers, and the magnitude of the load (Gopalakrishnan et al. 2006). Knowing the measured 

deflections of the pavement system and the layer thicknesses, the elastic (Young’s) moduli of 

individual pavement layers can be estimated through a process called backcalculation.  

The BAKFAA, FAA’s backcalculation software accompanying FAA AC 150/5370-

11B (FAA 2011), performs backcalculation using a mathematical model of a pavement 

system (forward model) that considers theoretical deflection values and assumed initial layer 

moduli values (i.e., seed moduli values) under the applied load. By changing the layer 

moduli, the calculated deflections can then be compared with the measured deflection values 

until these two deflection values match within a certain tolerance limit (Gopalakrishnan et al. 

2006). The back-calculated pavement moduli values could be input directly into 

FAARFIELD for design of rehabilitated airfield pavement structures. The BAKFAA uses 

elastic-layered analysis for the forward model in its backcalculation. Although the FAA 

recommends using backcalculation methods consistent with the forward computational 

procedure used for structural evaluation and design, there is no backcalculation tool available 
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consistent with NIKE3D, a 3D-FE-based pavement response model for design of new and 

rehabilitated (i.e., using overlays of existing concrete pavements) rigid pavement structures. 

Long and unpredictable computation times (i.e., 16 minutes for a case subjected to the 

mechanical and thermal loading for a nine-slab system, using a regular desktop computer) are 

major concerns when employing NIKE3D as a forward model for a backcalculation tool. 

Machine learning, as an alternative to the conventional engineering methods, can be 

used for solving many civil engineering problems such as determining infrastructure 

resilience in disasters to studying pavement deteriorations (Nazarnia and Sarmasti 2018, 

Fathi et al. 2019). ANNs, as a machine learning method, are very useful tools that can be 

have for a long time been successfully used in solving pavement engineering problems 

(Ceylan et al. 2014). ANNs are useful in modeling pavement systems because they have few 

of the limitations of conventional techniques such as normality, linearity, and variable 

independence. Moreover, ANNs can capture complex linear and nonlinear relationships 

between dependent and independent variables in a small fraction of time. Ceylan et al. (1999) 

and Ceylan (2002) demonstrated the success of ANN-based surrogate response models in 

computing lateral and longitudinal tensile stresses as well as deflections at the bottom of 

jointed concrete airfield pavements as a function of type, level, and location of an applied 

gear load, slab thickness, slab modulus, subgrade support, pavement temperature gradient, 

load-transfer efficiencies, and so on.  

Ceylan et al. (2005) developed ANN models to predict stiffness properties of rigid 

airfield pavements (slab-on-grade concrete pavement) using results from an ISLAB 2000 

finite-element program. The predictions from the models compared favorably with real HWD 

data gathered at FAA’s National Airport Pavement Test Facility (NAPTF) test sections. 
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Objectives 

The primary objective of this study is to investigate the feasibility of developing rapid 

three-dimensional finite-element (3D-FE)-based pavement foundation response and moduli 

prediction models for design of new and rehabilitated rigid airfield pavement structures. The 

developed prediction models use Artificial Neural Networks (ANNs) to return a close 

estimate of the responses computed by NIKE3D employed in FAARFIELD. Three case 

studies investigated in developing the ANN models include: (1) rigid-pavement foundation 

response prediction models for different aircraft loading conditions, (2) rigid-pavement 

foundation response prediction models for HWD/FWD loading conditions, and (3) single 

rigid-pavement moduli prediction model. The development procedure and results from rapid 

3D-FE based ANN prediction models are presented in this thesis along with other significant 

findings and recommendations for employing the developed models in structural design and 

evaluation of rigid airfield pavement systems. 

Thesis Organization 

Chapter 1 presents the background, motivations, objectives, and the thesis 

organization. Chapter 2 describes methodology for developing database and 3-D finite 

element simulations for training ANN models. Chapter 3 discusses about developing ANN 

models for pavement foundation critical responses under two heavy aircraft (B777-300 ER 

and A380-800) loading. Chapter 4 presents the ANN models predicting pavement foundation 

responses under HWD loading. Chapter 5 presents backcalculation models which can 

replicate the pavement layers’ elastic modulus. Finally, chapter 6 summarizes all the finding 

of this study and presents some recommendation to continue and expand this study. 
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CHAPTER 2.    METHODOLOGY 

Figure 2.1 shows the overall description of the ANN model development approach 

used in this study. Initially, a finite element based knowledge database composed of 

randomly generated FEAFAA input parameters within the minimum and maximum 

predefined limits, and FEAFAA-produced pavement responses for each pavement layer were 

populated to develop the ANN models. This finite element based knowledge database was 

then employed in ANN model development to establish the relationships between the input 

parameters and output variables. 

 

Figure 2.1  Overall description of ANN model development approach. 

Finite element 
based 

knowledge 
database 

development

• Populate randomly generated FEAFAA input parameters 
within specified ranges

• Run FEAFAA one case at a time

• Extract critical pavement responses for each pavement 
foundation sublayer (Extract deflections in offsets for 
FWD/HWD cases

• Enter the extracted critical pavement responses to the database

ANN model 
development

• Develop ANN models using FEAFAA input parameters as 
inputs and extracted critical pavement responses for each 
pavement foundation sublayer as outputs (Case 1)

• Develop ANN models using FEAFAA input parameters as 
inputs extracted deflection values in radial offsets for each 
layer as outputs (Case 2)

• Develop ANN models using extracted deflection values in 
radial offsets along with other FEAFAA input parameters (not 
including modulus values) as inputs and modulus values in 
each pavement foundation sublayer as outputs (Case 3)
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Finite Element Based Knowledge Database Development 

To develop the finite element based knowledge database, the required input 

parameters and their ranges were required. The FEAFAA required inputs related to aircraft 

type selection, pavement structure including material properties, layer thicknesses, slab and 

mesh sizes, loading positions, slab temperature gradient through the slab thickness (if 

temperature gradient loading is selected) and joint modeling. For each parameter, FEAFAA 

provides hardcoded range limits. In developing the database, 500 samples (cases) were 

populated using randomly assigned numbers within the predefined ranges for each input 

parameter. These predefined ranges were based on a combination of FEAFAA’s hardcoded 

ranges and engineering judgment. Table 2.1 shows the inputs and their ranges used in the 

development of the finite element based knowledge database. The loading angle in the table 

1 is angle of inclination symmetry axis of the airplane gear and the Y-axis. Note that ANN 

models were developed for rigid pavement configurations consisting of a PCC slab layer, a 

strong base layer (either a cement or asphalt treated base), a weak subbase (e.g., granular), 

and a subgrade. Since the current version of the only software for analyzing rigid airfield 

pavements of the FAA (FEAFAA) is using isotropic linear elastic assumption of the 

pavement layers, the ANN models in the current study have been developed based on this 

assumption. However, the authors are able to develop ANN models for more complicated 

FEM solutions based on their experience in past related studies. The authors are completely 

aware of the importance of the nonlinear, stress-dependent stiffness of the unbound aggregate 

base and subgrade soil layers for designing full-depth and conventional asphalt pavements. 

Such nonlinear, stress dependent characterizations of geomaterial layer stiffness also need to 

be properly accounted for in the nondestructive evaluation of existing pavements, i.e. the 

backcalculation of layer moduli from FWD/HWD testing (Ceylan et al. 2005). 
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Gopalakrishnan et al. (2006) mapped the solutions of nonlinear, stress-dependent finite 

element runs using ANNs and compared the ANN-based predictions of the flexible pavement 

layer moduli with the results obtained from the backcalculation programs using linear elastic 

assumption of the flexible pavement layers. Ceylan et al. (2005) developed ANN based 

backcalculation and forward calculation pavement structural models using the ILLI-PAVE 

2000 full-depth asphalt finite element solutions with nonlinear, stress-dependent subgrade 

soil properties. Both studies has shown that ANNs are capable of mapping complex 

relationships, such as those studied in complex finite element analyses, between the input 

parameters and the output variables for nonlinear, stress-dependent systems.  

Table 2.1  Ranges of input parameters used for producing finite element analysis runs. 

 
Inputs Ranges 

Min Max 

PCC Slab Modulus (GPa) (psi) 20.7 (3 × 106) 48.3 (7× 106) 

Thickness (cm.) (in.) 15.2 (6) 60.9 (24) 

Poisson Ratio 0.10 0.20 

Base Modulus (GPa) (psi) 1.4 (2 × 105) 13.8 (2 × 106) 

Thickness (cm.) (in.) 10.0 (4) 76.2 (30) 

Poisson Ratio 0.15 0.25 

Granular 
Subbase 

Modulus (GPa) (psi) 1×10-1 (15,000) 5.2×10-1 (75,000) 

Thickness (cm.) (in.) 15.2 (6) 127 (50) 

Poisson Ratio 0.20 0.40 

Subgrade Modulus (GPa) (psi) 2.1×10-2 (3,000) 3.4×10-1 (50,000) 

Poisson Ratio 0.30 0.45 

Slab Dimension (m.) (ft.) 4.6 (15) 9.1 (30) 

Slab Number of Elements 30 

Number of Slabs 9 

Foundation Number of Elements 30 

Loading Angle 0 90 

Temperature Gradient (oC/cm) (oF/in.) -0.3 (-2) +0.3 (2) 

Thermal Coefficient (1/ oC) (1/oF) 7.4×10-6 (4.1 × 10-6) 12.9×10-6 (7.2 × 10-6) 

Equivalent Joint Stiffness (kPa) (psi) 85,557 (12,409) 4,089,921 (593,193) 
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The FEAFAA software performs a 3D-FE analysis in which slab and pavement 

foundation layers are divided into meshes whose number is defined by the user. At the end of 

the analysis, the software produces an output file in txt format that provides data regarding x, 

y, and z coordinates for each mesh node as well as computed stress information at each mesh 

node. Figure 2.2 shows a typical FEAFAA output (subjected to a simultaneous Boeing B777-

300ER mechanical load and a thermal load) plotted using Tecplot 360 software [1]. 

 

Figure 2.2  A FEAFAA output (bending stresses). 

In this study, an automation tool was also developed using the C# programming tool 

together with the AutoIt® scripting tool; it can perform batch runs, obtain outputs, and 

perform post-processing that includes extracting critical pavement responses for each 

pavement foundation sublayer and adds them into the finite element based knowledge 

database. Figures 2.3 and 2.4 show the automation tools developed for this study. 
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1. Batch run number for multiple runs 2. Directory of FEAFAA, inputs, and outputs 

3. Range of cases for running in FEAFAA  4. Shows which case is running or finished 

Figure 2.3  Graphical interface of batch run program. 

 

 
1. Directory of output files generated by NIKEPLOT 2. Directory of datasets spreadsheet 

3. Currently running case 4. Start post-processing 

Figure 2.4  GUI of FEAFAA batch run post-processing utility.  

 

 

1

3
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CHAPTER 3.    ANN BASED PAVEMENT FOUNDATION RESPONSE 

PREDICTION MODELS FOR AIRCRAFT LOADS 

Description of model development  

Each rigid airfield pavement foundation sublayer has critical pavement responses that 

must be calculated. Figure 3.1 depicts some of these critical pavement responses for each 

type of rigid airfield pavement foundation sublayer.  

 

Figure 3.1  Some critical pavement responses for rigid airfield pavement foundation 

sublayers. 

 

Separate ANN models were developed to predict each critical pavement response in 

each pavement foundation sublayer. ANN models were developed for two wide body aircraft 

loading cases:  A Boeing B777-300ER and an Airbus A380-800.  
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The Boeing B777-300ER has a gross weight of 352.4 metric tons (777,000 lb.) with 

two main gears. Each gear has a dual-tridem configuration with six wheels. Its loading on the 

pavement sections is a 27.9 metric tons (61,513 lb.) wheel load, approximated as a uniform 

pressure of 1,524 kPa (221 psi), and applied over six 0.18 m2 (278 in2) rectangular areas. 

These areas were placed at a two-axle spacing of 1.5 m. (58 in.) and a dual spacing of 1.4 m. 

(55 in.). 

The other load, representing the A380-800, had a gross weight of 562 metric tons 

(1,239,000 lb.) with two six-wheel main gears. Each gear has a dual-tridem configuration 

with six wheels. Its loading on the pavement sections is a 44.5 tons (98,087 lb.) wheel load, 

approximated as a uniform pressure of 1,379 kPa (200 psi), and applied over six rectangular 

areas. These areas were positioned at a two-axle spacing of 1.7 m. (67 in.) and a dual spacing 

of 1.3 m. (53 in.).  

Because of symmetry, only one of the two main aircraft gears required analysis. Nine 

slabs with varying slab dimensions (Lx, and Ly), loading angle (θg) and gear locations (xg 

and yg), were also used in the analysis. 

Concrete pavement slabs typically experience curling on a daily basis because of 

surface warming and cooling cycles. Such a temperature effect can be simulated in the finite 

element model by providing an equivalent temperature gradient parameter. To account for 

temperature variations within the slab depth, the concept of equivalent temperature gradient 

(ETG) is used in FEAFAA, with ETG defined as the temperature difference between the top 

and the bottom of the slab per unit of slab thickness.  Therefore, simultaneous mechanical 

and thermal loading was applied in this case.  
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A total of 500 samples were used in the ANN model development (350 for training, 

75 for testing, and 75 for validation, respectively). ANN model predictions for critical 

pavement responses in each pavement foundation sublayer for both the B777-300ER and 

A380-800 cases were produced and compared with the FEM solutions. Figure 3.2 shows the 

ANN network architecture used in the model development. The 16-40-1 (number of inputs, 

number of hidden neurons, and number of outputs, respectively) network architecture 

contains sixteen input parameters, a hidden layer composed of forty neurons, and the 

maximum pavement response as an output layer. This ANN architecture was selected based 

on its demonstrated success in previous studies with similar numbers of input and output 

layers for analyzing pavement systems under mechanical and thermal loadings 

(Gopalakrishnan et al. 2006). 

 

Figure 3.2  ANN model architecture. 

PCC slab thickness

Base modulus

Base thickness

Subbase modulus

Subbase thickness

Subgrade modulus

X-offset

Y-offset

Loading angle

Slab width 

Slab length

Joint stiffness

Temperature Gradient 

Thermal Coefficient 

Input Layer

38

39

40

1

2

3

Hidden Layer

Critical pavement 
response

Output Layer

37

4

PCC slab Poisson’s ratio

PCC slab modulus
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Results and Discussion 

Vertical stress and deflection at top of the base layer 

One of the main assumptions used in the Westergard design equations is that the 

vertical stress providing support to the PCC pavement is directly proportional to the vertical 

deflection of the slab. The strength of the rigid pavement foundation is measured by the 

modulus of subgrade reaction (known as the k-value). Providing a base or a subbase layer 

may generate better support for the subgrade, stronger support to the PCC slabs, and a higher 

composite k-value. 

Figure 3.3 presents pavement response comparisons between the NIKE3D solutions 

and the ANN model predictions for maximum vertical compressive stress (σzz) at top of the 

base layer for (a) B777-300ER and (b) A380-800 loading. In the ANN model development, 

350, 75, and 75 cases, respectively, were used for training, testing, and validation purposes.  

The ANN models were found to successfully replicate FEAFAA/NIKE3D pavement 

response solutions in all cases. It is also important to note that validation and test sets 

produced a high degree of accuracy similar to that of the training set for all pavement 

response types, confirming ANN models’ success in generalization (i.e., they did not 

memorize the relationship between the input parameters and output variables), and showing 

them to be robust and valid. 

The high accuracy of the ANN model for the both aircraft types in predicting the 

vertical stresses at top of the base is clearly shown in Figure 3.3. The ANN models predicted 

maximum σzz at top of the base with a great accuracy with correlation coefficient (R2) of 

0.999. The average of the squares of the errors between the ANN model and the NIKE3D 

finite-element solution results for both aircraft are quite low (42 and 70 for B777-300ER and 

A380-800 respectively), showing that the quality of the ANN model prediction is very 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_%28statistics%29
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acceptable. As can be easily seen from Figure 3.3, vertical stress at top of the base is higher 

under the A380-800 gear load than under the B777-300ER load. The A380-800 has 562 

metric tons (1,239,000 lb.) gross weight with 95 percent of its weight on the main gears. The 

B777-300ER has a 352 metric tons (777,000 lb.) gross weight with 95 percent of its weight 

on the main gears. Figure 3.3 shows a higher range of vertical stresses at top of the base for a 

heavier gear load of A380-800. 

Figure 3.4 shows maximum vertical deflection predictions by the ANN model and 

NIKE3D solutions for (a) the B777-300ER and (b) the A380-800 gear loadings. The well-

trained ANN model results for vertical deflection at top of the base are presented in the 

figure, with correlation coefficient values (R2) of 0.999 for both aircraft loadings and a very 

low Mean Squared Error (MSE) of 5.03E-04 and 8.34E-04 for B777 and A380, respectively. 

Similar to the vertical stresses, vertical deflections are higher for the A380-800 load than the 

B777-300ER load. 

Vertical stress and deflection at top of the subbase layer 

 

A comparison between the ANN-predicted maximum vertical stresses values at top of 

the subbase and those obtained using the NIKE3D are shown in Figure 3.5. As shown in this 

figure, almost all 500 ANN predictions fell on the line of equality for the two types of 

airplane gear loads, indicating both proper training and excellent prediction performance of 

the ANN models. The correlation coefficient for the maximum vertical stress at top of the 

subbase for both values of aircraft loading was 0.999. 
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(a) 

 

(b) 

Figure 3.3  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical compressive stress (σZZ) at top of the base for (a) B777-300ER (b) A380-

800 gear loadings. 
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(a) 

 

 
(b) 

Figure 3.4  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical deflection (δ) at top of the base for (a) B777-300ER (b) A380-800 gear 

loadings. 
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The MSE, showing the average square errors, was 13.09 and 12.76 for the Boeing and 

the Airbus aircraft loadings, respectively. In other words, the average of the difference 

between ANN-predicted values and NIKE3D solutions are the square root of MSEs, almost 

3.6 kPa for both aircraft types. This reflects very little difference between ANN-predicted 

values and NIKE3D solutions, showing that the predicted results are highly reliable and 

accurate.  

Figure 3.5 depicts that the maximum vertical stresses at top of the subbase is higher 

when the A380-8800 gear load is applied. The maximum stresses at top of the subbase for a 

varied set of 500 inputs sets ranged from almost 80 kPa to 600 kPa for a pavement structure 

subjected to the B777-300ER gear load, and from 100 kPa to almost 800 kPa for a pavement 

structure subjected to the A380-800 gear loading. 

Separate ANN models were trained to predict the maximum vertical deflections at top 

of pavement structures subjected to B777-300ER and A380-800 gear loadings. Figure 3.6 

shows a comparison between ANN-predicted values and NIKE3D solutions for maximum 

deflection at top of the subbase. Good performance of the highly-accurate and well-trained 

ANN model is noticeable in Figure 3.6 that shows that the predicted values either fell on the 

line of equality or are very close to that line. High correlation coefficients (higher than 0.999) 

and very low MSE values demonstrate the very high accuracy of the model.  

Figure 3.6 also indicates that maximum vertical deflections at top of the subbase is 

higher when the A380-800 gear load is applied. The range of maximum vertical deflections 

at top of the subbase for many of input sets ranges from almost 0.5 mm. to less than 12 mm. 

for a pavement structure subjected to the B777-300ER gear load, and from 1 mm. to almost 

16 mm. for a pavement structure subjected to the A380-800 gear load. 
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(a) 

(b) 

Figure 3.5  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical compressive stress (σZZ) at top of the subbase for (a) B777-300ER (b) 

A380-800 gear loadings. 
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(a) 

 
(b) 

Figure 3.6  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical deflection (δ) at top of the subbase for (a) B777-300ER (b) A380-800 gear 

loadings. 
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Vertical Stress and Deflection at Top of the Subgrade 

Figure 3.7 illustrates pavement response comparisons between the NIKE3D solutions 

and the ANN model predictions for vertical compressive stresses at top of the subgrade for 

(a) B777-300ER and (b) A380-800. The high accuracy of the ANN model for both aircraft in 

predicting the vertical stresses at top of the subgrade is clearly represented by a high 

correlation coefficient and low MSE values as shown in Figure 3.7.  

The ANN models predicted a maximum σzz at top of the subgrade with greater than 

0.999 correlation coefficient accuracy. The average square errors between ANN model 

predictions and NIKE3D solution results for both aircraft are relatively very low, as 1.06 for 

B777-300ER and 0.99 for A380-800 gear loadings. 

NIKE3D solutions for the B777-300ER and the A380-800. High correlation 

coefficient, very low MSE, and results with very good fit to the equality line show that the 

ANN model was very well-trained and can estimate the maximum vertical deflections at top 

of the subgrade with great accuracy. 

By comparing Figure 3.4, Figure 3.6, and Figure 3.8 it can be concluded that the main 

deflection occurs at top of the subgrade, with the base and subbase layers having very low 

deflections. This reflects the importance of the subgrade deflection with respect to overall 

deflection of a rigid pavement structure.  
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(a) 

 

(b) 

Figure 3.7  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical compressive stress (σZZ) at top of the subgrade for (a) B777-300ER (b) 

A380-800 gear loadings. 
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(a) 

 

 
(b) 

Figure 3.8  ANN model response predictions vs. NIKE3D finite element solutions for 

maximum vertical deflection (δ) at top of the subgrade for (a) B777-300ER (b) A380-800 

gear loadings. 
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CHAPTER 4.    ANN BASED PAVEMENT FOUNDATION RESPONSE 

PREDICTION MODELS FOR HWD/FWD LOADS 

Description of model development  

FEAFAA software lets a user add new aircraft and any generic single and dual-wheel 

configurations to its library along with other aircraft parameters. To simulate FWD/HWD 

testing in FEAFAA, a generic single wheel loading was introduced, with a 16.3 metric tons 

(36,000 lb.) applied load, with a square footprint of 304.8×304.8 mm. (12×12 in.), producing 

a tire pressure of 1,724 kPa (250 psi). This generic single wheel was added to the library of 

FEAFAA as HWD plate loading, which was applied at the center of the slab.  

Similar to the previous procedure, a synthetic database comprised of 500 samples was 

developed for various slab and pavement foundation sublayer thicknesses and moduli values. 

In this case, only a mechanical load was applied to the pavement system. The ranges of used 

FEAFAA inputs were given the same values as in the previous case (Figure 3.2) but without 

any thermal loading inputs. 

FEAFAA runs using the automation tool were performed 500 times for all these 

cases. The automation tool was modified to extract deflections in theoretical radial offset 

distance from the FEAFAA output files, and computed slab deflections were extracted, as 

well as all pavement foundation sublayers under the theoretical radial offset distances were 

automatically located in the finite element based knowledge database (see Figure 4.1). Figure 

4.2 shows the applied load and theoretical radial offset distances as well as the deflections. 

The locations of selected radial offsets were 0 mm., 305 mm. (12 in.), 610 mm. (24 in.), 914 

mm. (36 in.), 1,219 mm. (48 in.), and 1,524 mm. (60 in.) from the center of the load to 

simulate the actual HWD loadings on the pavement system.  
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1. Directory of output files generated by NIKEPLOT 2. Directory of datasets spreadsheet 

3. Analysis points’ identification numbers 4. Start post-processing 

Figure 4.1  GUI of FEAFAA batch run post-processing utility for HWD/FWD loading. 

 

Figure 4.2  Load and theoretical radial offset distances in simulation of HWD testing. 
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An ANN model was developed to predict deflections under theoretical radial offset 

distances for the slab and each of the pavement foundation sublayers. In the ANN model 

development, all the various FEAFAA input parameters were provided as inputs and 

computed deflections were taken as outputs. Figure 4.3 shows the ANN network architecture 

used in the model development: fourteen input parameters, a hidden layer composed of forty 

neurons, and six deflection values as an output layer. 

 

Figure 4.3  ANN network architecture used in the model development. 

 

Results and Discussion 

Separate ANN models were trained to predict the deflection of each pavement 

sublayer. Each ANN model was trained for one pavement sublayer, estimating deflections on 

that layer at the locations of radial offsets (0 mm., 305 mm. (12 in.), 610 mm. (24 in.), 914 

mm. (36 in., 1,219 mm. (48 in.), and 1,524 mm. (60 in.)).  
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Figure 4.4 provides comparisons between the NIKE3D solutions and the ANN model 

predictions of the deflections at the selected points for each pavement layer. Figure 4.4 

clearly shows that the developed ANN models predict deflections at radial offsets for each 

layer with high accuracy. Figure 4.4 (a) shows ANN predicted deflections at top of the slab 

vs. NIKE3D solutions. The deflection at top of the slab is the overall deflection, the sum of 

deflections of all layers. The developed ANN model predicted the NIKE3D results of overall 

deflections at the six points by nearly 1.00 correlation coefficient accuracy.  

The deflection at top of the base is actually the overall deflection of the pavement’s 

foundation. Figure 4.4 (b) displays the ANN model prediction vs. NIKE3D results for the 

selected points at top of the base. The ANN model’s high accuracy is represented by 

correlation coefficient of 0.999 and a very low MSE value of 1.8E-05. In other words, the 

overall pavement foundation deflections at different points were accurately predicted by the 

ANN model. 

Figure 4.4 (c) depicts the capability of the ANN model for predicting the deflections 

at top of the subbase. The correlation coefficient value obtained was 0.999 and the average 

square error was 2.3E-05, reflecting very low error and high accuracy. ANN model 

estimation results for the deflection at top of the subgrade are presented in Figure 4.4 (d). As 

for other layers, the deflections at top of the subgrade were accurately predicted by the ANN 

model with a correlation coefficient of 1.00 and an average square error of 7.5E-06. The 

capability of the ANN model developed in this study to predict surface deflection is high at 

all offsets. Note that, while the magnitude of HWD surface deflections decreases with 

increasing radial offset, for the ANN developed models in this study, the prediction accuracy 

would not decrease as radial offset increases. 
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(a) 

 

(b) 

Figure 4.4  ANN pavement foundation response predictions for HWD/FWD loads vs. 

NIKE3D finite element solutions for vertical deflections (δ) at top of the (a) PCC slab, (b) 

base, (c) subbase, (d) subgrade. 
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(c) 

 

(d) 

Figure 4.4 (continued) 
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CHAPTER 5.    ANN BASED SINGLE RIGID-PAVEMENT MODULI PREDICTION 

MODEL FOR HWD/FWD LOADS  

Description of model development  

In this study, a 16-40-4 (sixteen inputs, one hidden layer with 40 hidden neurons 

each, and four outputs) architecture was used for developing the ANN models. The best 

training ANN model among 10 different trainings was chosen based on its highest value of 

correlation coefficient. The ANN model was trained for 500 different cases. The objective is 

to backcalculate the elastic modulus values for the pavement layers.  The deflection data, 

including the six HWD/FWD surface deflections calculated by NIKE3D at (0), and at radial 

offsets of 254 mm. (12 in.), 610 mm. (24 in.), 914 mm. (36 in.), 1,219 mm. (48 in.), and 

1,524 mm. (60 in.), were added to the inputs. The ANN model architecture is shown in 

Figure 5.1. 

 

Figure 5.1  ANN network architecture used in the backcalculation model development. 
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Results and Discussion   

An ANN model to backcalculate the elastic modulus of all layers was developed. 

Figure 5.2 presents the prediction performance of the ANN backcalculation model in 

predicting the elastic modulus of each layer separately. The predicted elastic modulus values 

for the slab are depicted in Figure 5.2 (a). As shown in this figure, almost all 500 ANN 

predictions fell on the line of equality, indicating proper training and excellent performance 

of the ANN models. The correlation coefficient value of 1.00 reflects very high accuracy 

with MSE of 5.2E-06 whose square root reflects the average error of the model, so the 

average error of the ANN predictions is 2.3E-03 GPa, a very low value related to the range of 

elastic modulus values (20 to 50 GPa). 

Figure 5.2 (b) shows the predicted elastic moduli values of the base layer vs. moduli 

used in NIKE3D runs.  This figure also shows that all ANN predictions for the 500 cases fall 

on the line of equality, reflecting accurate and exceptional performance of the ANN 

backcalculation model. 

The performance of the ANN backcalculation model in predicting the subbase 

modulus is shown in Figure 5.2 (c). The figure indicates that, while the accuracy of the 

model in estimating the subbase modulus is not as high as the accuracy of the model in 

predicting the modulus values of the slab and the base layer, the performance of the ANN 

backcalculation model is acceptable in predicting the subbase modulus. The ANN model can 

predict the modulus of the subbase with 0.938 correlation coefficient accuracy and a MSE of 

6.5E-04, i.e., actually an average error of 2.5E-02 GPa, relatively low for the range of 

subbase modulus values (higher than 0.1 GPa).  
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The backcalculated elastic subgrade modulus values are displayed in Figure 5.2 (d). 

The figure reflects the appropriate performance of the ANN backcalculation model in 

predicting the modulus of the subgrade with correlation coefficient of 0.997. Overall, Figure 

5.2 thus reflects the very reliable results produced by using just one ANN backcalculation 

model to predict the modulus values of all layers of the rigid pavement. 

A major benefit of applying the developed ANN backcalculation model in routine 

HWD/FWD evaluations results from the high-speed data processing and analyses that can 

even be performed in the field on a real-time basis.  

The ANN models developed in this study are orders of magnitude faster than the 

NIKE3D solutions, and they do not require lengthy and detailed finite-element pre- and post-

processing tasks. In addition, the ANN models do not require assumed initial layer moduli 

(i.e., seed moduli) that can be difficult to determine if a user for BAKFAA is unsure what 

modulus value to expect for each layer.  

The rapid prediction ability of the ANN backcalculation models makes them perfect 

tools for analyzing the FWD deflection data, thereby assessing the condition of pavement 

section in real time during field tests. 
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(a) 

   
(b) 

 

Figure 5.2  ANN pavement moduli predictions for HWD/FWD loads vs. NIKE3D finite 

element results for elastic modulus of the (a) PCC slab (b) base (c) subbase (d) subgrade. 
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(c) 

 
(d) 

Figure 5.2 (continued) 
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CHAPTER 6.    CONCLUSIONS AND RECOMMENDATIONS  

Conclusions 

The primary objective of this study is to investigate the feasibility of developing rapid 

three-dimensional finite-element (3D-FE)-based pavement foundation response and moduli 

prediction models for design of both new and rehabilitated rigid airfield pavement structures. 

The three model types developed in this study include: (1) rigid-pavement foundation 

response prediction models for different aircraft loading conditions, (2) rigid-pavement 

foundation response prediction models for HWD/FWD loading conditions, and (3) single 

rigid pavement moduli prediction model (i.e., backcalculation models). 

A set of finite elements based knowledge database was created by conducting 

hundreds of batch runs using FEAFAA/NIKE3D tool for two aircraft, the B777-300ER and 

the A380-800. ANN models were developed for predicting maximum deflections and vertical 

stresses in pavement foundation layers (Base, Subbase, and Subgrade). The results were that 

the ANN models accurately predicted the vertical stresses and overall deflection at top of the 

foundation layers. NIKE3D batch runs were also conducted for HWD/FWD test loading, 

followed by ANN models developed to predict deflections at specific theoretical radial offset 

distances from the plate load for the slab and each pavement foundation sublayer. Results 

obtained in this study showed that the developed ANN models have excellent capability for 

predicting the deflection at any offset, and their prediction accuracy did not decrease by 

when the radial offset was increased.  

A single ANN model was developed to backcalculate the elastic modulus of all 

pavement layers, and the results reflected very accurate moduli predictions for all layers. The 
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major benefits of applying the developed ANN backcalculation model in routine HWD/FWD 

evaluations are as follows: 

The ANN backcalculation model was developed based on a finite element based 

knowledge database created by NIKE3D, employed in FAA’s pavement design software, 

FAARFIELD, to compute concrete pavement responses. The ANN backcalculation model is 

consistent with NIKE3D for design of new and rehabilitated (i.e., overlays of existing 

concrete pavements) rigid airfield pavement structures. 

The ANN models do not require assumed initial layer moduli (i.e., seed moduli) that 

can be difficult to determine if a user of FAA’s backcalculation software, BAKFAA, is 

unsure as to what modulus value to expect for each layer. 

Unlike using iterative optimization techniques where the optimizer can get stuck in 

local minima of the solution space, ANN backcalculation models have higher likelihood of 

predicting near-global moduli solutions. 

The use of ANN backcalculation models results in high-speed data processing and 

analyses that can even be performed in the field; the ANN models developed in this study are 

orders of magnitude faster than the NIKE3D solutions. The rapid predictive ability of the 

ANN backcalculation models makes them perfect tools for analyzing the HWD/FWD 

deflection data, and thus assessing the condition of pavement sections in real time during 

field tests. 

Recommendations 

Current airport rigid pavement design practices do not consider pavement foundation 

failures (settlement, erosion, etc.) which have been observed in actual airport rigid pavement 

during its service life. The ANN models (i.e., case 1 forward models) in this study utilized 

the state-of-the-art 3D FE pavement response solutions for ANN model development. Such 
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ANN models could relate to actual rigid pavement foundation related distresses and 

associated pavement failures. Further, they could potentially be integrated into FAARFIELD 

as surrogate forward response prediction models for design of new and rehabilitated airfield 

rigid pavement systems in consideration of pavement foundation failures during service life. 

The HWD load location (interior) was fixed in this study and the effects of curling 

and warping were not considered. For further investigation, authors recommend study of 

different HWD load locations on the slab (corner, mid slab edge, or random locations) and 

both mechanical and simultaneous mechanical and thermal loading cases. The ANN 

backcalculation model compatibility for predicting the critical stresses or maximum 

responses on the slab or even on different layers should also be studied. Future studies will 

also focus on extending the model further using hybrid soft computing techniques such as 

nature-inspired metaheuristics for inverse analysis in combination with ANN forward-

modeling predictions.  

To meet all objectives of such future study, the developed ANN models can be 

applied to field HWD/FWD data acquired at the NAPTF during full-scale traffic testing of 

rigid pavement sections using six-wheel and four-wheel heavy aircraft gear loading. Non-

dimensional ANN backcalculation models could also be developed. An advantage of using 

dimensional analysis in the development of ANN models is that this significantly reduces the 

number of required input parameters. 
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